快速开始
注意:即梦系列(4.0 / 3.0 / agent)已改为按次计费,系统固定生成 4 张图片。
文生图(单张)
Copy
curl https://models.rivus.cn/v1/images/generations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"model": "jimeng-4.0",
"prompt": "一只可爱的熊猫在图书馆看书",
"size": "1024x1024"
}'
文生图(多张)
Copy
curl https://models.rivus.cn/v1/images/generations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"model": "jimeng-3.0",
"prompt": "未来城市的夜景,赛博朋克风格",
"n": 4,
"size": "1792x1024"
}'
图生图
Copy
curl https://models.rivus.cn/v1/images/edits \
-H "Authorization: Bearer YOUR_API_KEY" \
-F "image=@original.png" \
-F "model=jimeng-4.0" \
-F "prompt=添加科幻元素和霓虹灯效果" \
-F "n=1"
Python 示例
文生图
Copy
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://models.rivus.cn/v1"
)
response = client.images.generate(
model="jimeng-4.0",
prompt="一只可爱的熊猫在图书馆看书",
size="1024x1024"
)
print(response.data[0].url)
图生图
Copy
with open("input.png", "rb") as image_file:
response = client.images.edit(
image=image_file,
model="jimeng-4.0",
prompt="添加科幻元素"
)
print(response.data[0].url)
批量生成
Copy
prompts = [
"熊猫在图书馆看书",
"熊猫在公园散步",
"熊猫在竹林里休息"
]
for prompt in prompts:
response = client.images.generate(
model="jimeng-3.0",
prompt=prompt,
n=1
)
print(f"{prompt}: {response.data[0].url}")
错误处理
Copy
from openai import OpenAI, APIError, RateLimitError
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://models.rivus.cn/v1"
)
try:
response = client.images.generate(
model="jimeng-4.0",
prompt="测试图片",
n=1
)
print(response.data[0].url)
except RateLimitError:
print("请求频率过高,请稍后重试")
except APIError as e:
print(f"API 错误: {e}")
下载生成的图片
Copy
import requests
response = client.images.generate(
model="jimeng-4.0",
prompt="一只可爱的熊猫",
n=1
)
image_url = response.data[0].url
# 下载图片
img_data = requests.get(image_url).content
with open('output.png', 'wb') as f:
f.write(img_data)
模型选择建议
| 场景 | 推荐模型 | 理由 |
|---|---|---|
| 商业设计、高质量海报 | jimeng-4.0 | 画质最佳,细节丰富 |
| 快速原型、批量生成 | jimeng-3.0 | 速度快,性价比高 |
| 多轮对话式创作 | jimeng-agent | 智能理解上下文 |
